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Abstract—In this paper we show that inter-technology interfer-
ence can be recognized by commodity WiFi devices by monitoring
the statistics of receiver errors. Indeed, while for WiFi standard
frames the error probability varies during the frame reception in
different frame fields (PHY, MAC headers, payloads) protected
with heterogeneous coding, errors may appear randomly at any
point during the time the demodulator is trying to receive
an exogenous interfering signal. We thus detect and identify
cross-technology interference on off-the-shelf WiFi cards by
monitoring the sequence of receiver errors (bad PLCP, bad
PCS, invalid headers, etc.) and develop an Artificial Neural
Network (ANN) to recognize the source of interference. The
result is quite impressive, reaching an average accuracy of almost
99% in recognizing ZigBee, Microwave and LTE (in unlicensed
spectrum) interference.

Index Terms—Wireless LAN, Interference, Artificial Neural
Networks.

I. INTRODUCTION

Nowadays, we are witnessing an impressive success of IEEE
802.11 technology, better known as WiFi, for supporting the
growing demand of wireless broadband connectivity. Public
WiFi networks are deployed worldwide, with more than 50%
of the total mobile traffic carried by WiFi. The availability
of WiFi networks is often considered as a commodity service
driving immense economic value, and the unlicensed spectrum
is becoming one of society’s most valuable resources. Al-
though WiFi is a dominant communication technology in this
spectrum, many other low range technologies coexist in unli-
censed ISM bands for supporting several vertical applications,
such as building automation, smart metering systems, health
care monitoring, surveillance systems, game remote controllers
and so on. Moreover, cellular technologies are trying to extend
their operation to ISM bands for increasing their capacity.
Two different solutions have been envisioned by 3GPP in ISM
bands, referred to as Licensed Assisted Access (LAA) [1] and
LTE-Unlicensed (LTE-U) [2], which work respectively, with
and without the listen-before-talk mechanism.

Although in WiFi carrier sense and adaptive modulation
mechanisms have been included, it has been shown that serious
performance impairments can arise in presence of exogenous
interfering signals due to different technologies. For example,
in [3] it is shown that the capacity of a good WiFi link can be
reduced to zero in presence of analog phones, video cameras,
or sensors based on IEEE 802.15.4 technology [4], [5], while
other devices such as a Xbox controller and a microwave oven
can half the throughput. The effect of sensors’ interference on

the WiFi link is impressive if we consider that the 802.11
and 802.15.4 technologies (hereafter referred as ZigBee and
WiFi) are pretty heterogeneous in terms of bandwidth (2
versus 20 MHz) and transmission power (e.g. 0 dBm for
ZigBee and 20 dBm for WiFi). The possible reasons are that
some WiFi implementations are unable to detect non-WiFi
signals or introduce latencies [6] or because of the different
timings to perform CSMA/CA [7], [8]. About the interference
with cellular technologies, several research studies are trying
to characterize the impact on LTE transmissions on WiFi
performance. Preliminary empirical and simulation results [9]
show that WiFi performance can be critically affected even
when LTE links operate at the minimum bandwidth of 1.4
MHz. In [10] it is demonstrated that even when utilizing the
listen-before-talk principle, LAA-LTE heavily impacts WiFi
performance, and that WiFi with MIMO performs worse
than WiFi without MIMO when LTE interference is strong.
Additionally, increasing distance between LTE and WiFi links
does not necessarily decrease the impact of interference in
indoor environments.

In this scenario, it is important to identify the presence of
such coexisting technologies to allow possible countermea-
sures (e.g. finding a different channel) or activate some co-
ordination mechanisms (e.g. setup a cross-technology TDMA
scheme [11]). For this classification, the typical approach in
the literature is to analyze the RSSI samples in the frequency
and time domain [3], [12], or to perform a cyclostationary
signal analysis and blind signal detection [13] and other spec-
trum sensing techniques [14]. Although these approaches are
very effective, they usually require to monitor the interfering
signals for some seconds or use specialized hardware. Instead,
in this work we propose to simply monitor the reception errors
of commodity WiFi cards, and then apply an artificial neural
network in order to identify and characterize cross-technology
interference. Following the initial approach of [15], we analyze
the error domain, i.e. the error burst caused by the interfering
signal. However, in this paper we exploit a more powerful
classification tool, the Artificial Neural Networks (ANNs), and
we extend the analysis to the emerging LTE in unlicensed
spectrum. Experimental results show that our solution provides
excellent results, with an average of almost 99% accuracy.

Although in this work we focus on three interference
sources, namely ZigBee, LTE and microwave ovens, our
solution does not depend on the type of technology, but
only requires a training phase based on the events generated



in presence of a controlled source of interference. We then
employ an ANN to identify the interference technology from
the occurrence of the generated error events. The idea is that
the proposed approach could be easily extended to any other
type of interference.

After a brief literature review of background information
(section II), we analyze the characteristics of the error bursts
caused by inter-technology interference in section III. The
ANN implementation and model selection are presented in
section IV, where we also present our experimental results.
Finally, section V concludes the paper and proposes possible
future extensions.

II. BACKGROUND

A. Wireless Technologies

In this section we briefly recall some key aspects of the
MAC/PHY layers in WiFi, ZigBee and LTE that affect the
power of cross-technology interference and the typical timings
of transmissions and channel idle intervals.

Interference power. WiFi and LTE transmissions are typi-
cally performed at a maximum power of 15 or 20dBm, while
ZigBee transmissions can span in the range [−25, 0]dBm. LTE
transmission power is modulated because of power control
mechanisms, which are usually not implemented in WiFi and
ZigBee. Additionally, each WiFi channel is 20 MHz wide and
is spaced of 5 MHz from the adjacent ones. ZigBee channels
have only 2 MHz of bandwidth with 3 MHz of inter-channel
gap bands (i.e. the center frequencies maintain the spacing
of 5 MHz from the adjacent channels). It follows that four
ZigBee channels are entirely included in a WiFi channel. LTE
center frequencies in ISM bands coincide with WiFi ones, with
a typical bandwidth of 5 MHz (but bandwidths as smaller as
1.4 MHz are possible).

Transmission times. Since the three technologies have been
defined for different applications, the frame size, the data
rates and the channel access units considered by the standards
are quite different. For WiFi and ZigBee, channel access is
performed on a per-packet basis, i.e. transmission times corre-
spond to the time required for completing the transmission of
a packet (or an aggregation/fragmentation of packets). ZigBee
packets are small, with a maximum payload of only 127 bytes.
Bytes are organized into 4-bit symbols that are mapped into 16
pseudo-random sequences of 32-chip transmitted at 2 Mchip/s
(i.e. 250 Kbps), which correspond to a frame transmission
interval of about 4 ms for the maximum frame size. WiFi
frames are much longer, with a maximum frame size of 2358
bytes and multiple OFDM modulations and coding schemes
available (from 6 Mbps up to 54 Mbps, which lead respectively
to a maximum transmission time of about 3.2 ms and 0.37
ms). For LTE, the channel access is performed on the basis
of resource block allocations, which are organized into sub-
intervals lasting a fixed time of 1 ms within a frame of 10
ms. Packet transmissions are achieved by scheduling a given
set of resource blocks in one or multiple consecutive frames.
Although the total number of resource blocks used for each
packet depends on the employed data rate and multiple rates

are available (up to 25.2 Mbps for 5 MHz of bandwidth with
300 sub-carriers, 64-QAM modulation, and a symbol time of
71.4 µs), the channel occupancy time in each channel access
is fixed according to the LTE frame structure.

Intervals between transmissions. Different channel access
schemes are employed in WiFi, ZigBee and LTE for unli-
censed bands. WiFi and ZigBee are mostly based on random
access although channel sensing is performed with different
granularity: ZigBee spends 128 µs for detecting the channel
activity and 192 µs to switch from reception to transmission
mode. Since WiFi slots are much shorter (9 µs), if a WiFi
transmission is originated during this switching time, it cannot
be detected by the ZigBee node. Figure 1-a shows a channel
occupancy trace acquired by means of a USRP node in a
network in which a WiFi node coexist with a ZigBee one.
In the figure we clearly observe that each transmitter is
characterized by a specific RSSI value and frame transmission
time: WiFi frames occupy the channel for less than 1 ms with
a RSSI value of -65 dBm, while ZigBee frames last 4 ms with
a RSSI value of -72 dBm. The figure also shows that a ZigBee
transmission can overlap with WiFi, in case a WiFi frame is
transmitted during the time spend by ZigBee for switching
from sensing to transmission mode.

LTE transmissions in licensed bands are organized into
frames of 10 ms that start at regular time intervals. For oper-
ating in unlicensed bands, two different adaptations have been
envisioned: employing duty cycles for periodically suspending
frame transmissions, while keeping the synchronization of
time instants at which frame transmissions can start (LTE-U);
employing listen-before-talk before transmitting each frame
(LTE-LAA). In this second case, when the medium is sensed
as busy, the deferral time is given by a fixed time of 10
ms for maintaining the synchronization of frame starting
times (with the so called FBE mechanism) or it is given
by a random slotted deferral time compensated by a varying
channel occupancy time (with the so called LBE mechanism).
In our work, we emulate both the LTE-U and LTE-LAA
approach, by assuming that LTE frame transmissions can start
only at regular time intervals. Figure 1-b gives an example of
the interaction between an LTE-U transmission with 6 active
and 4 silent subframes (i.e. 6 ms on and 4 ms off) and a WiFi
station which tries to access the same channel: the figure shows
that WiFi packets can collide with LTE and that part of the
channel time is wasted due to the consequent backoff.

B. Artificial Neural Networks

ANNs are a class of powerful machine learning tools that
can be used to solve classification and regression problems.
They can be distinguished in two types of architectures,
depending on the types of connection between neurons: in the
feedback architectures, the presence of connections between
neurons of the same layer or between neurons of the previ-
ous layer realizes a feedback connection. In the feedforward
architectures, the connections between the neurons do not
allow feedback between layers, and the signal is transmitted
only to the neurons belonging to the next layer. In this
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Fig. 1. Interference between technologies: temporal trace (RSSI samples) of WiFi-ZigBee (a) and WiFi-LTE collisions (b).

article we used a neural network model called Multi-Layer
Perceptron (MLP), a widely used feedforward ANN, formed
by one input layer, one or more inner layers called “hidden”,
and a layer of output neurons. The training of the network
is usually done with an algorithm called back propagation,
which is basically divided into two phases. In the first phase,
called forwarding, controlled inputs are applied to the network,
causing the activation of the neurons of the input layer. The
signal propagates to the next layers, finally reaching the output
neurons. The error between the desired output and the obtained
result for each neuron is then computed. In the second phase,
called backwarding, the error value is propagated backward
and the weights of each link accordingly modified with an
optimization method, which aims to minimize the output
error with respect to all the network weights. Finally, the
network “model selection” is achieved by choosing between
a set of hyper-parameters. The hyper-parameters define the
structure of the network, such as the number of hidden layers
and the type of activation function, and the configuration of
the training algorithm, such as the regularization factor and
the learning rate. Comparing the performance scores of all
possible combinations of parameters, we finally select the
model giving the best score.

III. ERROR ANALYSIS IN WIFI RECEIVERS

A. Monitoring Receiver Errors

In [15], we have shown that WiFi cards receiving non-
WiFi modulated signals generate error patterns significantly
different, in terms of occurrence probability and time inter-
vals between consecutive errors, from the ones generated by
collisions with other WiFi transmissions. In presence of wide-
band noise and exogenous interference signals, WiFi receivers
demodulate a sequence of completely random bits and try to
interpret these bits according to the format of WiFi frames.
Being all the bits random, the probability of having a specific
error heavily depends on the format of the expected frame.

Most commercial WiFi cards track the occurrence of differ-
ent receiver events, such as the start of a synchronization trial,
the detection of wrong PLCP, the end of a frame transmission,
etc., by means of specific counters implemented in internal
registers. As a reference WiFi receiver, we considered a WiFi
card (namely, Broadcom bcm4318) for which the card internal
registers are documented and an interface for reading the
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Fig. 2. Mapping between a real trace of receiver events and the time-slotted
vectors generated by the monitoring process.

register values is available [16]. For producing a temporal
trace of the receiver events, storing the ordered sequence of
event type and occurrence time, we implemented a monitoring
process devised to sample at regular intervals the receiver
registers. Indeed, the event occurrence cannot be detected by
the card host as an interrupt signal, but needs to be indirectly
identified by comparing the state of the receiver registers in
consecutive sampling times.

We set a sampling interval equal to 250µs as a trade-
off between detection delay and tracking complexity, while
avoiding the overloading of the card to host interface. Because
of the periodic sampling, multiple receiver events can occur in
the same monitoring interval. Event samples are represented
by a vector of eight components, whose value represents
the counter of each different event type. We also sampled
another card register, called busy time register, which does
not track the occurrence of receiver events but rather the
cumulative time during which the receiver remains active. The
differences among consecutive values of the busy time register
can be mapped into a logical idle/busy state of the channel as
observed by the receiver.

Figure 2 shows the operation of our monitoring process:
a real trace of receiver errors is mapped into a time series
of event vectors, in which we can easily recognize consec-
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Fig. 3. Bursts of receiver events corresponding to the reception of ZigBee, Microwave and LTE-U interference respectively.

utive error bursts due to the same interfering transmission.
Error bursts can be originated for many different reasons: for
example, a checksum failure can follow the detection of a
good PLCP, or multiple (failed or not) synchronization trials
are performed after a bad PLCP event. The total number of
receiver events in a burst depends on the duration of the in-
terfering transmission and on the receiver implementation, i.e.
on the reset time required by the demodulator for performing
consecutive synchronization trials. Each burst can be delimited
by observing the time interval elapsed from the previous and
next events, and/or by considering the channel transitions from
idle to busy and from busy to idle as delimitation times.

B. Temporal Analysis

Testbed. For our experiments, we set up a testbed at the
University of Palermo and placed a monitoring WiFi node
together with heterogeneous interfering sources. Four different
interfering sources have been considered: a ZigBee transmitter,
a LTE transmitter, a WiFi transmitter and a microwave oven.
All nodes have been set to a few meters distance between
each other and the transmitting nodes are programmed to
work on different interfering and non-interfering channels.
ZigBee nodes used in our testbed are based on Microchip
MRF24J40 transceiver. The ZigBee frames are transmitted at
250kbps with a length of 127 bytes. WiFi transmitter has been
implemented by using the same Broadcom card used by the
WiFi monitoring node, with a frame length of 1500 bytes
transmitted at 24 or 36 Mbps. The LTE-U transmitter, instead,
was implemented on a SDR platform based on USRP B-210
and the srsLTE framework [17]. We considered a downlink
interfering stream with 5 MHz of bandwidth and 300 sub-
carriers, centered on channel 11. Following the standard, the
whole frame allocation time is 10ms composed of 10 sub-
frames. The frame structure has been organized introducing
silent intervals and a fixed sub-frame pattern, with mask
[1,1,1,1,1,1,0,0,0,0] where 1 indicate transmission allowed and
0 transmission denied.

Results. Figure 3 shows three traces of receiver events
when receiving ZigBee, Microwave and LTE-U interference.
Figure 3-a, for example, shows four ZigBee packets, with error
events spaced approximately 1ms from each other. Figure 3-b
shows the error events caused a Microwave oven. From the
figure, it can be clearly recognized the periodical radiation
pattern of the oven, with 10 ms of activity and 10 ms idle.

During radiation, channel is sensed as busy by the WiFi node,
but error events are pretty different from the ones caused
by ZigBee transmissions, since they are concentrated at the
beginning and at the end of the radiation interval (rather
than being continuously repeated). This can be due to the
power-on and power-down ramp of the Microwave, being
the demodulator unable to work when the radiation power is
stable. Finally, figure 3-c shows the receiver events in presence
of LTE transmissions. Under this interference source, the
WiFi receiver behavior resembles the ZigBee interference with
the granularity of consecutive synchronization trials equal to
regular intervals of 1 ms. However, occasionally, some events
are closer to each other. We also observed, the occurrence of
the first synchronization trial is not always synchronized with
the activation of the channel busy register: for example, in
the figure at time 20 ms the busy channel state switches to 1,
while the first event vector with non-null components (namely,
three Bad PLCP events) are revealed after 2 ms.

IV. INTERFERENCE DETECTION

A. Features extraction and normalization

The experimental results presented in the previous section
show that, although all non-WiFi interfering signals generate
the same type of errors with similar statistics, their temporal
analysis can be exploited for discriminating among different
interfering sources. From the qualitative description of figure
3, it clearly emerges that several features can be exploited for
such a discrimination, such as:

1) the number of events generated by the monitoring pro-
cess during the same interfering burst, which depends
on the interfering power, with an higher number of syn-
chronization trials performed in case of LTE-U signals;

2) the length of the error burst, delimited by means of the
correlation between the error vectors and the channel
busy register, which depends on the transmission time
of the interfering source;

3) the temporal gap between consecutive errors within the
same burst, which might be symptom of power ramp
effects (e.g. for the Microwave oven).

We propose to classify the interference sources through
an MLP neural network with one hidden layer because this
already provides good results and is computationally less
expensive than networks with multiple hidden layers. As
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Features value
Too Long 0
Too Short 0
Invalid Mac Header 0
Bad FCS 1
Bad PLCP 4
Good PLCP 1
Good FCS, matching RA 0
Good FCS, not matching RA 0
Burst length 5370
Time between consecutive events 1100

TABLE I
INPUT RECORD RELATIVE TO THE LAST ERROR BURST OF FIG. 3-C.

depicted in figure 4, features in the input layer are organized
in 10 neurons (8 representing the counter of 8 types of
reception errors [15], one for the error burst length in µs, one
representing the maximum distance between two consecutive
events in the same burst in µs). For example, Table I shows the
input features generated by the last LTE-U error burst shown
in 3-c. In the output layer, instead, we will have 4 neurons,
each of them mapping the relevant interfering technology
(WiFi, ZigBee, Microwave, LTE-U). The MLP network was
implemented in Python using the scikit-learn machine learning
library [18]. Since MLP is sensitive to work on normalized
data, i.e. on features of Gaussian distribution with zero mean
and unit variance, we preprocessed our data by removing
the average value and dividing the values by the feature’s
standard deviation. The dataset was randomly divided into two
parts (using the train test split function of scikit-learn), the
training set and the test set: the first one is used for training
and validating the neural network, the second one is used for
evaluating the classification accuracy. We considered a training
set of 4716 samples (equally distributed between LTE-U, WiFi,
ZigBee and Microwave oven), while the test set was composed
of 2020 samples. Finally, the hyper-parameters of the network,
i.e. the number of neurons in the hidden layer, the activation
function and the regularization factor have been studied in
the Model Selection phase, as discussed in the following sub-
section.

Solver Accuracy Training time Iterations
SGD with constant learning 93.8% 100.54 s 276
SGD with adaptive learning 93.8% 98.90 s 276
L-BFGS 98.5% 7.48 s 305
Adam 96.1% 18.56 s 276

TABLE II
OPTIMIZATION SOLVERS WITH RELATIVE TRAINING TIMES.

Function Accuracy
Identity 87.6%
Logistic 98.5%
ReLU 98.2%
tanh 98.1%

TABLE III
AVERAGE ACCURACY OBTAINED BY DIFFERENT ACTIVATION FUNCTIONS.

B. Model Selection

The model selection phase consists in comparing the per-
formance obtained by changing different hyper-parameters,
and choose accordingly the hyper-parameters that maximize
the classification accuracy. To avoid the overfitting problem,
we carried out a “k-fold” cross-validation with k = 10: we
divided the training set into 10 equal parts and, at each step,
one sub-sequence of the data set was used to evaluate the
accuracy of the model trained with the remaining nine sub-
sequences. We used the GridSearchCV function of scikit-learn
to carry out an exhaustive “grid” search over the space of
hyper-parameters considered in our analysis, and performed a
k-fold cross-validation for each obtained model. Specifically,
the space of hyper-parameters was configured by considering
the following factors:

1) solvers: L-BFGS, adam, SGD with constant learning
rate, SGD with adaptive learning rate;

2) number of neurons in the hidden layer: from 1 to 50;
3) regularization factor “alpha” (L2 penalty): 10−1, 10−2,

10−3, 10−4, 10−5, 10−6, 10−7;
4) activation function: identity, logistic, tanh, ReLU.
For solvers adam and SGD the initial learning rate was set

to 10−3 (default value in scikit-learn), which controls the step-
size in updating the weights. SGD was set with a nestorovs
momentum of 0.9, while in adam the exponential decay rate
for estimates of first and second moment were set to β1 =
0.9 and β2 = 0.999. All solvers have tolerance tol = 10−4.
The solvers iterate until convergence (determined by tol) or
up to a maximum number of iterations (never reached in our
experiments).

In Table II it is shown the average accuracy, the time
required for training the weights of the optimization algo-
rithms and the number of iterations until convergence. The
optimization were run on a laptop PC with dual core 1.8 GHz
CPUs and 4 GB of RAM. It is clear that L-BFGS method
converges faster and with higher accuracy. Figure 5 shows
that, for a given configuration of the other hyper-parameters,
increasing the number of neurons in the hidden layer improves
the accuracy until a limit value of about 98.5%.

Tables III and IV show the performance achieved with
different activation functions and regularization factors. In
particular, the logistic function reaches a higher accuracy
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Alpha: 0.1 0.01 0.001 10−4 10−5 10−6 10−7

Accuracy: 98.5% 97.9 % 97.5% 97.7% 97.9% 97.8% 97.9%
TABLE IV

AVERAGE ACCURACY OBTAINED BY VARYING THE REGULARIZATION
FACTOR.

compared to other activation functions, while the optimal reg-
ularization factor alpha was 10−1. The final hyper-parameters
derived by the model selection phase result in the MLP
architecture shown in figure 4, where we omit the bias node
for the sake of simplicity, with 29 neurons in the hidden layer.

C. Classification performance

After identifying the best hyper-parameters, we trained the
network on the entire training set and evaluated the classi-
fication accuracy on the test set. To this purpose, we used
a test set of 2020 burst samples (505 samples per class)
representative of the four categories WiFi, ZigBee, Microwave
and LTE-U. Table V shows the confusion matrix of the
classifier, which obtains an average accuracy of 98.6%. The
few errors are between ZigBee and LTE-U, because of the
similarity of the error burst, as shown in 3. Finally, to verify
the robustness of the model, we evaluated the classifier on
the entire dataset composed of 67653 elements. Table VI
shows that the classification performance is maintained even
considering such a larger dataset, confirming the excellent
results shown on the test set.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel classification scheme for
detecting ZigBee, LTE-U or microwave oven interference only
using commodity WiFi cards. The idea is to exploit the error
events caused by cross-technology interference on the WiFi
node. Based on such error signals, we developed and optimized
an MLP neural network to automatically classify the source
of interference. After selecting the most appropriate model
and training the network on a training set, we then tested the
classifier with a limited number of samples and finally run
the classifier on a large dataset. The result is quite impressive,
reaching an average accuracy of almost 99%.

WiFi ZigBee Microwave LTE-U
WiFi 100.0 0.0 0.0 0.0
ZigBee 0.0 97.5 0.4 2.1
Microwave 0.0 0.0 100.0 0.0
LTE-U 0.0 2.2 0.7 97.0

TABLE V
CONFUSION MATRIX FOR THE TEST SET.

WiFi ZigBee Microwave LTE-U
WiFi 100.0 0.0 0.0 0.0
ZigBee 0.0 98.2 0.4 1.3
Microwave 0.0 0.0 100.0 0.0
LTE-U 0.0 3.4 0.6 96.0

TABLE VI
CONFUSION MATRIX FOR THE ENTIRE DATASET.

Although in this paper, the focus was to identify the
interference caused by ZigBee, WiFi, microwave and LTE-U,
the proposed approach could be easily extended to additional
interfering technologies operating in the ISM band, e.g. Blue-
tooth or cordless phones.
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